Create table with Rasch dichotomous model item fit values for each item.
Source:R/easyRasch.R
RIitemfitRM.Rd
Defaults to using conditional estimates for MSQ values (Müller, 2020)
estimated using the iarm
package. Use method = "unconditional"
for the
"old" unconditional MSQ values (using eRm
).
Usage
RIitemfitRM(
dfin,
samplesize,
nsamples,
zstd_min = -1.96,
zstd_max = 1.96,
msq_min = 0.7,
msq_max = 1.3,
fontsize = 15,
fontfamily = "Lato",
output = "table",
tbl_width = 65,
method = "conditional"
)
Arguments
- dfin
Dataframe with item data only
- samplesize
Desired sample size in multisampling (recommended range 250-500)
- nsamples
Desired number of samples (recommended range 10-50)
- zstd_min
Lower cutoff level for ZSTD
- zstd_max
Upper cutoff level for ZSTD
- msq_min
Lower cutoff level for MSQ
- msq_max
Upper cutoff level for MSQ
- fontsize
Set font size for table
- fontfamily
Set font family for table
- output
Defaults to output a table. Optional "dataframe" or "quarto"
- tbl_width
Set table width in percent
- method
Defaults to "conditional". Optional "unconditional"
Details
ZSTD is inflated with large samples (N > 500). Optional function to reduce sample size and run analysis using multiple random samples to get average ZSTD If you are using Quarto/Rmarkdown, "cache: yes" will be a useful chunk option to speed things up. 50 samples seems to give stable output, but 4-8 is probably sufficient for a quick look at the approximate ZSTD statistics. It is recommended to use sample size 200-500, based on Hagell & Westergren, 2016.