Fits a Rasch PCM using eRm, and conducts a PCA of residuals to get eigenvalues using psych::pca() and reports the top 5 values.
Source: R/easyRasch.R
RIpcmPCA.RdProportion of explained variance is calculated using stats::prcomp().
Details
Note from ?psych::pca:
The eigenvectors are rescaled by the sqrt of the eigenvalues to produce
the component loadings more typical in factor analysis.
Possible rotations are: "none", "varimax", "quartimax", "promax", "oblimin", "simplimax", and "cluster".
See Chou & Wang (2010, DOI: 10.1177/0013164410379322) for a simulation study testing PCA eigenvalues across multiple conditions.